inventions inventions inventions inventions

Digital camera - Invented by Steven Sasson

Steven Sasson-Digital camera
: 1975
: United States
: Electrical & Electronics

About Invention

A digital camera (or digicam) is a camera that encodes digital images and videos digitally and stores them for later reproduction.Most cameras sold today are digital, and digital cameras are incorporated into many devices ranging from PDAs and mobile phones (called camera phones) to vehicles.

Digital and film cameras share an optical system, typically using a lens with a variable diaphragm to focus light onto an image pickup device.The diaphragm and shutter admit the correct amount of light to the imager, just as with film but the image pickup device is electronic rather than chemical. However, unlike film cameras, digital cameras can display images on a screen immediately after being recorded, and store and delete images from memory. Many digital cameras can also record moving videos with sound. Some digital cameras can crop and stitch pictures and perform other elementary image editing.


Steven Sasson as an engineer at Eastman Kodak invented and built the first electronic camera using a charge-coupled device image sensor in 1975.Earlier ones used a camera tube; later ones digitized the signal. Early uses were mainly military and scientific; followed by medical and news applications. In the mid to late 1990s digital cameras became common among consumers. By the mid-2000s digital cameras had largely replaced film cameras, and higher-end cell phones had an integrated digital camera. By the beginning of the 2010s almost all smartphones had an integrated digital camera.

Image sensors

The two major types of digital image sensor are CCD and CMOS. A CCD sensor has one amplifier for all the pixels, while each pixel in a CMOS active-pixel sensor has its own amplifier.Compared to CCDs, CMOS sensors use less power.Cameras with a small sensor use a back-side-illuminated CMOS (BSI-CMOS) sensor. In large sizes those are too expensive and bring small benefit, so larger ones such as DSLRs use CCD. Overall final image quality is more dependent on the image processing capability of the camera, than on sensor type.

Sensor resolution

The resolution of a digital camera is often limited by the image sensor that turns light into discrete signals. The brighter the image at a given point on the sensor, the larger the value that is read for that pixel. Depending on the physical structure of the sensor, a color filter array may be used, which requires demosaicing to recreate a full-color image. The number of pixels in the sensor determines the camera's "pixel count". In a typical sensor, the pixel count is the product of the number of rows and the number of columns. For example, a 1,000 by 1,000 pixel sensor would have 1,000,000 pixels, or 1 megapixel.

Methods of image capture

Since the first digital backs were introduced, there have been three main methods of capturing the image, each based on the hardware configuration of the sensor and color filters.

Single-shot capture systems use either one sensor chip with a Bayer filter mosaic, or three separate image sensors (one each for the primary additive colors red, green, and blue) which are exposed to the same image via a beam splitter.

Multi-shot exposes the sensor to the image in a sequence of three or more openings of the lens aperture. There are several methods of application of the multi-shot technique. The most common originally was to use a single image sensor with three filters passed in front of the sensor in sequence to obtain the additive color information. Another multiple shot method is called Microscanning. This method uses a single sensor chip with a Bayer filter and physically moved the sensor on the focus plane of the lens to construct a higher resolution image than the native resolution of the chip. A third version combined the two methods without a Bayer filter on the chip.

The third method is called scanning because the sensor moves across the focal plane much like the sensor of an image scanner. The linear or tri-linear sensors in scanning cameras utilize only a single line of photosensors, or three lines for the three colors. Scanning may be accomplished by moving the sensor (for example, when using color co-site sampling) or by rotating the whole camera. A digital rotating line camera offers images of very high total resolution.

The choice of method for a given capture is determined largely by the subject matter. It is usually inappropriate to attempt to capture a subject that moves with anything but a single-shot system. However, the higher color fidelity and larger file sizes and resolutions available with multi-shot and scanning backs make them attractive for commercial photographers working with stationary subjects and large-format photographs.

Improvements in single-shot cameras and image file processing at the beginning of the 21st century made single shot cameras almost completely dominant, even in high-end commercial photography.

Digital camera backs

In the industrial and high-end professional photography market, some camera systems use modular (removable) image sensors. For example, some medium format SLR cameras, such as the Mamiya 645D series, allow installation of either a digital camera back or a traditional photographic film back.

Area array:



Linear array:

CCD (monochrome)

3-strip CCD with color filters

Linear array cameras are also called scan backs:


Multi-shot (three-shot, usually)

Most earlier digital camera backs used linear array sensors, moving vertically to digitize the image. Many of them only capture grayscale images. The relatively long exposure times, in the range of seconds or even minutes generally limit scan backs to studio applications, where all aspects of the photographic scene are under the photographer's control.

Some other camera backs use CCD arrays similar to typical cameras. These are called single-shot backs.

Since it is much easier to manufacture a high-quality linear CCD array with only thousands of pixels than a CCD matrix with millions, very high resolution linear CCD camera backs were available much earlier than their CCD matrix counterparts. For example, you could buy an (albeit expensive) camera back with over 7,000 pixel horizontal resolution in the mid-1990s. However, as of 2004, it is still difficult to buy a comparable CCD matrix camera of the same resolution. Rotating line cameras, with about 10,000 color pixels in its sensor line, are able, as of 2005, to capture about 120,000 lines during one full 360 degree rotation, thereby creating a single digital image of 1,200 Megapixels.

Most modern digital camera backs use CCD or CMOS matrix sensors. The matrix sensor captures the entire image frame at once, instead of incrementing scanning the frame area through the prolonged exposure. For example, Phase One produces a 39 million pixel digital camera back with a 49.1 x 36.8 mm CCD in 2008. This CCD array is a little smaller than a frame of 120 film and much larger than a 35 mm frame (36 x 24 mm). In comparison, consumer digital cameras use arrays ranging from 36 x 24 mm (full frame on high end consumer DSLRs) to 1.28 x 0.96 mm (on camera phones) CMOS sensor.


Invention Images



View Photos


View Photos

Invention of Digital camera Video