inventions inventions inventions inventions

Jet engine - Invented by Sir Frank Whittle

Sir Frank Whittle-Jet engine
: Sir Frank Whittle (Know about Sir Frank Whittle)
: 1930
: United Kingdom
: Aviation

About Invention

A jet engine is a reaction engine discharging a fast moving jet that generates thrust by jet propulsion in accordance with Newton's laws of motion. This broad definition of jet engines includes turbojets, turbofans, rockets, ramjets, and pulse jets. In general, jet engines are combustion engines but non-combusting forms also exist.


Since the dawn of powered flight, the reciprocating piston engine in its different forms (rotary and static radial, aircooled and liquid-cooled inline) had been the only type of powerplant available to aircraft designers. This was understandable so long as low aircraft performance parameters were considered acceptable, and indeed inevitable. However, by approximately the late 1930s, engineers were beginning to realize that conceptually the piston engine was self-limiting in terms of the maximum performance which could be obtained from it; the limit was essentially one of propeller efficiency, which seemed to peak as blade tips approached supersonic radial velocity. If engine, and thus aircraft, performance was ever to increase beyond such a barrier, a way would have to be found to radically improve the design of the piston engine, or a wholly new type of powerplant would have to be conceived. The latter would prove to be the case. The gas turbine (turbojet, or simply jet) engine, as subsequently developed, would become almost as revolutionary to aviation as the Wright brothers' first flight.

The gas turbine was not an idea developed in the 1930s, the patent for a stationary turbine was granted to John Barber in England in 1791. The earliest attempts at jet engines were hybrid designs in which an external power source supplied the compression. In this system (called a thermojet by Secondo Campini) the air is first compressed by a fan driven by a conventional piston engine, then it is mixed with fuel and burned for jet thrust. Three known examples of this type of design were the Henri Coanda's Coanda-1910 aircraft, the much later Campini Caproni CC.2, and the Japanese Tsu-11 engine intended to power Ohka kamikaze planes towards the end of World War II. None were entirely successful and the CC.2 ended up being slower than the same design with a traditional engine and propeller combination.

The key to the useful jet engine was the gas turbine, used to extract energy to drive the compressor from the engine itself. The first gas turbine to successfully run self-sustaining was built in 1903 by Norwegian engineer Aegidius Elling. The first patents for jet propulsion were issued in 1917. Limitations in design and practical engineering and metallurgy prevented such engines reaching manufacture. The main problems were safety, reliability, weight and, especially, sustained operation.

On January 16, 1930 in England Frank Whittle submitted patents for his own design for a full-scale aircraft engine (granted in 1932). In 1935 Hans von Ohain started work on a similar design in Germany, seemingly unaware of Whittle's work.

Ohain approached Ernst Heinkel, one of the larger aircraft industrialists of the day, who immediately saw the promise of the design. Heinkel had recently purchased the Hirth engine company, and Ohain and his master machinist Max Hahn were set up there as a new division of the Hirth company. They had their first HeS 1 engine running by September 1937. Unlike Whittle's design, Ohain used hydrogen as fuel, which he credits for the early success. Their subsequent designs culminated in the gasoline fuelled HeS 3 of 1,100 lbf (5 kN), which was fitted to Heinkel's simple and compact He 178 airframe and flown by Erich Warsitz in the early morning of August 27, 1939 from Marienehe aerodrome, an impressively short time for development. The He 178 was the world's first jetplane.

In England, Whittle had significant problems in finding funding for research, and the Air Ministry largely ignored it while they concentrated on more pressing issues. Using private funds he was able to get a test engine running in 1937, but this was very large and unsuitable for use in an aircraft. By 1939 work had progressed to the point where the engine was starting to look useful, and Whittle's Power Jets Ltd. started receiving Air Ministry money. In 1941 a flyable version of the engine called the W.1, capable of 1000 lbf (4 kN) of thrust, was fitted to the Gloster E28/39 airframe, and flew in May 1941.

One problem with both of these early designs, which are called centrifugal-flow engines, was that the compressor works by "throwing" (accelerating) air outward from the central intake to the outer periphery of the engine where the air is then compressed by a divergent duct setup—converting velocity into pressure. The advantage was that such compressor designs were well understood in centrifugal superchargers but this leads to a very large cross section for the engine at rotational speeds that were usable at the time. A disadvantage was that the air flow had to be "bent" to flow rearwards through the combustion section and to the turbine and tailpipe. With improvements to bearings the shaft speed of the engine would increase and the diameter of the centrifugal compressor would reduce greatly. The shortness of this engine is an advantage. The strength of this type of compressor is an advantage over the later axial flow compressors that are still liable to foreign object damage (FOD in aviation parlance).

Austrian Anselm Franz of Junkers' engine division (Junkers Motoren or Jumo) addressed this problem with the introduction of the axial-flow compressor. Essentially, this is a turbine in reverse. Air coming in the front of the engine is blown to the rear of the engine by a fan stage (convergent ducts), where it is crushed against a set of non-rotating blades called stators (divergent ducts). The process is nowhere near as powerful as the centrifugal compressor, so a number of these pairs of fans and stators are placed in series to get the needed compression. Even with all the added complexity, the resulting engine is much smaller in diameter. Jumo was assigned the next engine number, 4, and the result was the Jumo 004 engine. After many teething troubles, mass production of this engine started in 1944 as a powerplant for the world's first jet-fighter aircraft, the Messerschmitt Me 262. Because Hitler wanted a new bomber the Me 262 came too late to decisively impact Germany's position in World War II but it will be remembered as the first use of jet engines in service. After the end of the war the German Me 262 aircraft were extensively studied by the victorious allies and contributed to work on early Soviet and US jet fighters.

British engines also were licensed widely in the US. Their most famous design, the Nene would also power the USSR's jet aircraft after a technology exchange. American designs wouldn't come fully into their own until the 1960s.


Invention Images



View Photos


View Photos